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A lighter fluid (fresh water) flows steadily above a body of a standing heavier one (sea
water) in a porous medium. If mixing by transverse pore-scale dispersion is neglected,
a sharp interface separates the two fluids. Solutions for interface problems have been
derived in the past, particularly for the case of interest here: sea-water intrusion
in coastal aquifers. The Péclet number characterizing mixing, Pe = b′/αT , where b′

is the aquifer thickness and αT is transverse dispersivity, is generally much larger
than unity. Mixing is nevertheless important in a few applications, particularly in the
development of a transition layer near the interface and in entrainment of sea water
within this layer. The equations of flow and transport in the mixing zone comprise the
unknown flux, pressure and concentration fields, which cannot be separated owing
to the presence of density in the gravity term. They are nonlinear because of the
advective term and the dependence of the dispersion coefficients on flux, the latter
making the problem different from that of mixing between streams in laminar viscous
flow.

The aim of the study is to solve the mixing-layer problem for sea-water intrusion
by using a boundary-layer approximation, which was used in the past for the case
of uniform flow of the upper fluid, whereas here the two-dimensional flux field is
non-uniform. The boundary-layer solution is obtained in a few steps: (i) analytical
potential flow solution of the upper fluid above a sharp interface is adopted; (ii) the
equations are reformulated with the potential and streamfunction of this flow serving
as independent variables; (iii) boundary-layer approximate equations are formulated
in terms of these variables; and (iv) simple analytical solutions are obtained by
the von Kármán integral method. The agreement with an existing boundary-layer
solution for uniform flow is excellent, and similarly for a solution of a particular case
of sea-water intrusion with a variable-density code. The present solution may serve
for estimating the thickness of the mixing layer and the rate of sea-water entrainment
in applications, as well as a benchmark for more complex problems.

1. Introduction
Flow of a lighter liquid overlying a heavier one in porous media occurs in a few

important applications, e.g. sea-water intrusion in coastal aquifers, flow of fresh water
above brine bodies at the bottom of deep formations, upconing due to pumping of
fresh water underlain by salt water or to pumping of oil floating above water. We are
interested primarily in the fresh-water sea-water case and will refer in the following to
these two fluids, of densities ρf and ρs , respectively. Furthermore, the study is limited
to steady flow.
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These flow patterns are stable and a common approximation is to regard the two
fluids as separated by a sharp interface. Then, the problem becomes one of free-
surface flow and solutions have been derived in the past analytically, either exactly
or by using various approximations (see, for a review, Bear 1979), and numerically
(see e.g. Bakker 2003). If only the lighter fluid is in motion and the heavier one is
at rest, the problem is mathematically similar to that of a free surface separating a
liquid and air.

In reality, a transition zone develops between the two fluids owing to mixing by
molecular diffusion and by transverse pore-scale dispersion. The mixing is responsible
for the drawing of sea water into coastal aquifers (which is part of the so-called
submarine groundwater discharge, Smith 2004) and its flushing by fresh water. Also,
mixing is responsible for salinity of water pumped by wells, even if their screens are
sufficiently far above the sea-water body.

The intensity of mixing between sea water and fresh water is characterized by the
Péclet number, Pe =V L/DT , where V is a fresh-water velocity scale, L is a length
scale (e.g. thickness of the aquifer) and DT is the transverse dispersion coefficient
(molecular diffusion is generally negligible). The latter can be written as DT =V αT ,

where αT is the transverse pore-scale dispersivity. In most conceivable applications,
Pe = L/αT is generally much larger than unity.

Modelling of flow in presence of mixing is difficult as it is influenced by density
variations, and as a result it is not possible to separate the flow and transport
equations. Most of the solutions in the past were obtained by numerical methods and
various codes and semi-analytical approximations were developed for this purpose.
A development based on a perturbation scheme is presented by Dentz et al. (2006),
who also provide a comprehensive review of the literature.

In all these studies, relatively small values Pe = O(101–102) were assumed. This
choice was motivated primarily by numerical constraints, namely the need to render
numerical dispersion smaller than the actual one. As a result, relatively thick transition
zones and high rates of flushing were present in the solutions and the salient question
is whether the adopted values of αT were realistic.

The experimental determination of αT under laboratory conditions and homo-
geneous media was carried out in the past (see e.g. List & Brooks 1967) and it
led to very small values αT =(10−1–10−2)d , where d is the pore scale. Determining
αT at the large scale pertaining to natural conditions, is difficult. Analysis of large-
scale tracer transport experiments (Fiori & Dagan 1999) arrived at the surprisingly
small values αT ≈ 0.5 mm. Although somewhat larger values up to αT = 32 mm were
reported in the literature (Rugner et al. 2004), the associated Pe numbers are
still very large. Our interest in the problem was motivated by measurements of
salinity profiles in the Yarkon–Taninim aquifer in Israel (Paster, Dagan & Guttman
2006), which revealed the existence of a relatively narrow mixing zone between
fresh and salt waters in spite of the large scale and the high heterogeneity of this
formation. Hence, it seems that the numerical codes used so far are of limited
applicability in solving problems characterized by the high, but realistic values
Pe = O(103–104).

Similar problems, of a thin transition zone, are encountered in various fields of
fluid mechanics and the appropriate tool to tackle them is the boundary-layer (BL)
approximation, which simplifies the problem considerably and makes possible the
derivation of accurate analytical or numerical solutions. This approximation was
used in order to solve a similar problem of the viscous flow of two parallel streams
of different velocities (e.g. Lock 1951).



Mixing in porous media: a boundary-layer solution 457

x

y

BA

Impervious
region

F
re

sh
 w

at
er

 

Salt water 

Impervious region

U

Sea

x

y

U

g

Fresh
water

Salt
water

(a) (b)

Impervious
region

Ψ0 = 0

Figure 1. (a) The geometry of the problem solved by Van Duijn & Peletier (1992). (b) The
geometry of the sea-water intrusion problem in a confined coastal aquifer of thickness b′. The
dashed lines are streamlines of the Glover (1959) solution.

A few attempts have been made to apply the BL approximation to the salt-water
intrusion problem (Dagan 1971; Rubin 1983). However, a complete and consistent
approach was applied by Van Duijn & Peletier (1992). In their pioneering work,
they solved the simple case of uniform flow of fresh water above a planar interface
separating it from salt water (figure 1a). Though this is an idealized configuration,
the results are of interest in establishing the procedure and in gaining insight into
the mixing mechanism. However, the findings are not directly applicable to the more
realistic conditions of non-uniform flow, such as that depicted in figure 1(b). The aim
of the present study is to generalize the Van Duijn & Peletier (1992) approach to
such flows, focusing on the two-dimensional sea-water intrusion problem, in which
fresh water flows in a confined aquifer toward the sea, whereas the sea-water body
lies beneath it.

The plan of the paper is as follows. The problem is stated mathematically first, the
sharp interface solution is presented next, the problem is then reformulated in the φ

(potential), ψ (streamfunction) plane, the BL equations are derived and the latter are
subsequently solved by using the von Kármán integral approach. Illustration of the
results and comparison with previous solutions conclude the paper.

2. Mathematical statement of the problem
The following equations describe the general problem of the steady flow of a

mixture of variable density of salt and fresh water (see, for instance, Dagan 1989).
Darcy’s law (representing the balance between pressure gradient, viscous stresses

and gravity) is

q ′ = − κ

µ
(∇p′ − ρ ′ g), (2.1)

where q ′ is the fluid volumetric flux (specific discharge), p′ is the pressure, ρ ′ is the
density, g is the gravity acceleration vector, κ is the isotropic permeability and µ is
the coefficient of viscosity. The equation of mass conservation of the mixture is given
by

∇ · (ρ ′q ′) = 0. (2.2)

The salt transport is governed by the mass balance equation

∇ · (C ′q ′) = ∇ · F′
c, (2.3)
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where C ′ is the concentration (mass of salt/volume of fluid) and F′ is the dispersive
flux. The latter is related to the concentration gradient by

(F ′
c)i = n(D′

0 δij + D′
ij )

∂C ′

∂x ′
j

, (2.4)

where n is the porosity, D′
0 is the effective coefficient of molecular diffusion, D′

ij is the
tensor of pore-scale dispersion and δij is the Kronecker unit tensor.

To close the system, a state equation ρ ′ = funct(C ′) is required. The equations
may be simplified in the case of weak concentrations, as pertinent to fresh and
sea waters, for which (ρs − ρf )/ρf � 0.025. Hence, we adopt the following widely
used assumptions: the viscosity coefficient µ is constant in (2.1), the Boussinesq
approximation, i.e. ρ ′ variations are neglected in (2.2) and they interact with flow
through the gravity term of (2.1) only, in the state equation ρ ′ depends linearly on
the concentration C ′ (Holzbecher 1998, § 2.2) and the dispersion coefficient depends
on the flux as in the case of a tracer. With these simplifications, we rewrite (2.2)–(2.4)
as follows

∇ · q ′ = 0, (2.5)

q ′ · ∇ρ ′ = ∇ · F′, (2.6)

F ′
i = n(D′

0 δij + D′
ij )

∂ρ ′

∂x ′
j

, nD′
ij = αT q ′δij + (αL − αT )

q ′
iq

′
j

q ′ , (2.7)

where αT and αL are the transverse and longitudinal dispersivities, respectively,
and q ′ is the flux modulus. Equations (2.1) and (2.5)–(2.7) form a closed system
for q ′, p′ and ρ ′. We assume that the medium is homogeneous and isotropic, i.e.
κ , αT and αL are constant. Subsequently, we switch to dimensionless variables
with the aid of a fresh water flux U and a length scale L as follows: x = x ′/L,
y = y ′/L, q = q ′/U , F = F′/[U (ρs −ρf )], p = p′/[(ρs −ρf )gL], ρ = (ρ ′ −ρf )/(ρs −ρf ),

γ =[κg(ρs − ρf )]/(Uµ), ε = Pe−1 = αT /L, λ= αL/αT , D0 = nD′
0/(UL). Furthermore,

we eliminate the pressure p′ by applying the rot operator to (2.1) to arrive at the
following system for q and ρ

∇ × q = γ k × ∇ρ, (2.8)

∇ · q = 0, (2.9)

q · ∇ρ = ∇ · F, (2.10)

Fi =

{
D0δij + ε

[
qδij + (λ − 1)

qiqj

q

]}
∂ρ

∂xj

, (2.11)

that is, F = (D0 + εq)∇ρ + ε(λ − 1)
q
q

(q · ∇ρ), (2.12)

where k is a unit vector in the upward vertical direction. Equations (2.8)–(2.11)
were the starting point of Van Duijn & Peletier (1992). Unlike the case of a tracer,
the solution of the flux cannot be separated from that of the density, owing to the
presence of ρ in (2.8). Furthermore, the system is nonlinear, owing to both advective
and dispersive fluxes in (2.10) and (2.11). The parameters D0 and ε are much smaller
than unity, calling for a boundary-layer solution of this system.
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3. Sharp interface solution
Since D0 and ε (2.11) are very small, their neglect leads to the zero-order

approximation F = 0, i.e. q0 · ∇ρ0 = 0 in (2.10). The ensuing sharp interface solution
is the one pertinent to two fluids, with ρ = 0 in the fresh water and ρ = 1 in the salt
water. For the sake of completeness we review here a few such solutions.

It can be seen from (2.8) and (2.9) that the fresh-water flux satisfies

∇ × q0 = 0, ∇ · q0 = 0, (3.1)

and in two-dimensional potential and streamfunction can be defined by

q0 = ∇φ0 = ∇ψ0 × 1z, ∇2φ0 = ∇2ψ0 = 0. (3.2)

In the case of salt water at rest, the two fluids are separated by a streamline
and integration of (2.8) across the interface, for ρ discontinuous, leads to the
relationships

q0f = γ sin θ0f , sin θ0f = q0yv/q0f , (3.3)

where q0f is the fresh-water flux tangent to the interface, q0yv is its vertical component,
and θ0f is the angle between the interface and the horizontal axis.

We consider in this study two particular cases: uniform flow and sea-water
intrusion.

3.1. Fresh-water uniform flow (figure 1a)

The boundary condition for the fresh-water flow is q0 = q0x = 1, q0y = 0 for x = 0,
y > 0. It follows from (3.3) that the solution q0x ≡ 1, q0y ≡ 0 for x > 0, y > 0 is
possible if the angle between the x-axis and the horizontal direction satisfies

sin θ0f = 1/γ. (3.4)

Hence, a discontinuity of ρ and q prevails at the interface y =0, streamlines being
parallel to the x-axis.

In view of the developments of the next section, it is worth discussing the meaning
of (3.4) in terms of the pressure gradient along the interface. The salt water being at
rest, it is seen from Darcy’s Law (2.1) that the pressure gradient component parallel
to the interface balances the salt-water weight component in the same direction. Since
pressure is continuous across the interface, the same pressure gradient balances the
lighter fluid weight supplemented by the frictional force that is proportional to q0x. It
is easy to ascertain that for a stratified flow for which ρ is a function of y only and
it decreases continuously from ρ =1 to ρ = 0, a similar exact solution with q0y ≡ 0
and (3.4) exists if

q0x + ρ = 1 (3.5)

across the transition zone.

3.2. Sea-water intrusion (figure 1b)

This is a schematic representation of aquifer fresh-water flow toward the sea, the
heavier sea water intruding into the aquifer from below. The boundary conditions are
of no flow q0y = 0 at the lower x ′ < 0, y ′ = 0 and upper x ′ < x ′

A, y ′ = b′ boundaries of
the confined part, respectively, whereas constant pressure prevails at the sea bottom
x ′ >x ′

A, y ′ = b′. At x ′ → ∞, y ′ < b′, hydrostatic pressure prevails in the salt-water
body. Fresh-water flow is uniform, of flux U = Q′/b′ at the inlet x ′ → −∞, Q′ being
the fresh-water discharge. We adopt L = b′ and U as length and flux scales and switch



460 A. Paster and G. Dagan

to dimensionless variables. Along the interface y = y(x), condition (3.4) prevails at
each point i.e.

q0f = γ sin θ0f , (3.6)

sin θ0f = q0y/q0f =
dy/dx

[1 + (dy/dx)2]1/2
, (3.7)

x being horizontal and y vertical, upward.
The problem has been solved exactly by using the hodograph method (Bear &

Dagan 1964). The impervious bottom was assumed to extend over the entire x-axis,
but this is immaterial since the sea water is at rest. Although the derivation of the
exact solution requires a numerical quadrature, it was found (Bear & Dagan 1964,
figure 3) that for the dimensionless parameter η =1/γ = Q′/[(κg/µ)(ρs −ρf )b′] < 0.5,

the solution is accurately approximated by the simple one derived by Glover (1959)
for b′ → ∞. We adopt the latter, which covers most cases of interest in applications,
as it implies a length of penetration greater than the aquifer thickness. Thus, the
Glover solution is given by Z = (1+iη)Ω0 − (1/2)ηΩ2

0 where Z = x +iy, Ω0 =φ0 + iψ0

and i = (−1)1/2. Separation of real and imaginary parts leads to

x = φ0 − ηψ0 + 1
2
η
(
ψ2

0 − φ2
0

)
, y = ψ0 + ηφ0(1 − ψ0). (3.8)

Streamlines, and in particular the interface defined by ψ0 = 0, are confocal
parabolas. The fresh-water flow takes place (figure 1b) between the interface
y = 1 − (1 − 2ηx)1/2 (ψ0 = 0) and the top y =1 (ψ0 = 1). The seepage face (figure 1b)
extends over xB − xA = η/2 while the distance to the toe is xA = 1/(2η) − η/2. The
flux magnitude at any point and along the interface is given by

q0 = [(1 − ηφ0)
2 + η2(1 − ψ0)

2]−1/2 (0 < φ0 < 1/η, 0 < ψ0 < 1), (3.9a)

q0f = [(1 − ηφ0)
2 + η2]−1/2 (0 < φ0 < 1/η), (3.9b)

respectively. It is emphasized that at the origin (the toe), the flux has the finite value
q0f = [1 + η2]−1/2 (which is close to unity), and the interface is not tangent to the
bottom since dy/dx = η at x = y = 0. This local inconsistency stems from adopting
the Glover (1959) solution and the discrepancy diminishes as η → 0.

In the present study, we regard the flow pattern (3.9) in the domain defined by
the equipotentials φ0 = 0 and φ0 = 1/η and the streamlines ψ0 = 0 and ψ0 = 1, which
are mapped on the (x, y)-plane by (3.8), as representing the actual flow above the
interface for the configuration of figure 1(b).

4. Reformulation of the mixing problem in the (φ0, ψ0) plane and the
derivation of the boundary-layer equations

No matter how small are D0 or ε, the right-hand side of (2.11) becomes large
at the transition zone owing to the gradient of ρ, similar to the case of viscous
shear flow between two streams or past a body. This is a typical BL problem
and Van Duijn & Peletier (1992) were the first to tackle it, while maintaining the
density effect in Darcy’s law. However, their solution, to be discussed below, was
derived for the idealized case of uniform flow (figure 1a). Our aim is to solve the
sea-water intrusion problem (figure 1b) and to establish a procedure that can be
applied to mixing in other cases of non-uniform flow. This extension is similar to
the passage from the viscous BL for flow past a plate to the flow past a body
of finite thickness. Along these lines, we adopted the procedure developed by Cole
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(1968, chap. 4.2) for this purpose. The BL approximation is incorporated in a singular
perturbation expansion, with φ0, ψ0 (the potential and the streamfunction of the
potential flow) rather than x, y, serving as independent variables (a similar procedure
has been applied for mixing of a tracer, Dagan 1971). The advantage of this general
formulation for viscous flow past bodies is that it is applicable to any two-dimensional
flow without separation. Toward its extension for our case, the first step is to rewrite
the equations of flow and mixing, (2.8)–(2.11), in terms of φ0, ψ0 as independent
variables. This implies extending the mapping of the (x, y)-plane onto the (φ0, ψ0)-
plane slightly beneath the sharp interface. This may pose some delicate problems
in the general case in the toe region, but is simple for the case investigated here
(figure 1b).

In order to reformulate (2.8)–(2.11) we use the standard expressions of the operator
∇ in an orthogonal curvilinear system (see e.g. Batchelor 1967, Appendix 2). With the
metric coefficients h1 = h2 = 1/q0 in the present case, the flow equation (2.8) becomes

∂

∂φ0

(
qψ

q0

)
− ∂

∂ψ0

(
qφ

q0

)
= −γ

(
cos θ0

q0

∂ρ

∂φ0

− sin θ0

q0

∂ρ

∂ψ0

)
, (4.1)

where qφ and qψ are the components of q along the streamlines and equipotentials

of the q0 field, respectively. Similarly, θ0 = sin−1(q0 · k/q0) is the angle between the
tangent to a streamline and the horizontal direction. The solution of the sharp
interface problem is supposed to provide q0 and θ0 as functions of φ0, ψ0. In
particular, along the sharp interface ψ0 = 0, the relationship (3.7) between q0f and θ0f

prevails. Recall that φ0, ψ0 are extended beneath ψ0 = 0, with q0(φ0, ψ0) and θ0(φ0, ψ0)
analytically continued there (we need q0 and θ0 to be differentiable at ψ0 = 0, as shown
in the following). Thus, for the sea-water intrusion case (figure 1b) to be considered
here, this is achieved with the aid of (3.9) extended to ψ0 < 0. This is different from
the problem of viscous flow past a body considered by Cole (1968), which dealt with
the exterior flow ψ0 > 0 only.

Similarly, the continuity equation (2.9) becomes

∂

∂φ0

(
qφ

q0

)
+

∂

∂ψ0

(
qψ

q0

)
= 0, (4.2)

while the transport equation (2.10) renders

qφ

∂ρ

∂φ0

+ qψ

∂ρ

∂ψ0

= q0

[
∂

∂φ0

(
Fφ

q0

)
+

∂

∂ψ0

(
Fψ

q0

)]
. (4.3)

The components of the solute flux (2.11) are transformed into

Fφ = q0

{[
D0 + εq + ε(λ − 1)

q2
φ

q

]
∂ρ

∂φ0

+ ε(λ − 1)
qφqψ

q

∂ρ

∂ψ0

}
, (4.4a)

Fψ = q0

{
ε(λ − 1)

qφqψ

q

∂ρ

∂φ0

+

[
D0 + εq + ε(λ − 1)

q2
ψ

q

]
∂ρ

∂ψ0

}
(4.4b)

by using the relationships ∂ρ/∂sφ = q0(∂ρ/∂φ0) and ∂ρ/∂sψ = q0(∂ρ/∂ψ0). Following
Cole (1968), we switch to the normalized fluxes wφ = qφ/q0, wψ = qψ/q0, w = q/q0 as
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independent variables in (4.1)–(4.4) to arrive at the final formulation

∂wψ

∂φ0

− ∂wφ

∂ψ0

= −γ

(
cos θ0

q0

∂ρ

∂φ0

− sin θ0

q0

∂ρ

∂ψ0

)
, (4.5)

∂wφ

∂φ0

+
∂wψ

∂ψ0

= 0, (4.6)

wφ

∂ρ

∂φ0

+ wψ

∂ρ

∂ψ0

=
∂

∂φ0

(
Fφ

q0

)
+

∂

∂ψ0

(
Fψ

q0

)
, (4.7)

Fφ/q0 =

[
D0 + εq0w + ε(λ − 1)q0

w2
φ

w

]
∂ρ

∂φ0

+ ε(λ − 1)q0

wφwψ

w

∂ρ

∂ψ0

,

Fψ/q0 = ε(λ − 1)q0

wφwψ

w

∂ρ

∂φ0

+

[
D0 + εq0w + ε(λ − 1)q0

w2
ψ

w

]
∂ρ

∂ψ0

. (4.8)

The nonlinear system (4.5)–(4.8) expresses the flow and mixing problem in terms of
wφ , wψ and ρ as functions of φ0, ψ0 with known q0(φ0, ψ0) and θ0(φ0, ψ0) and given
constant parameters γ, D0, ε and λ. It must be solved under appropriate boundary
conditions. Although its structure is not simpler than that of the original system
(2.8)–(2.11), it permits us to formulate the BL equations in a general manner for any
regular sharp interface solution.

4.1. The boundary-layer equations

The general approach followed by Cole (1968) for viscous flow is to expand (4.5)–(4.8)
in outer and inner perturbation expansions for D0 = o(1) and ε = o(1). The leading-
order term of the outer expansion is the limit D0 = 0 and ε = 0 in (4.5)–(4.8), i.e. the
sharp interface solution. Assuming that the latter is defined by ψ0 = 0, the solution is
given in a compact form by

wφ0 = w0 = H (ψ0), wψ0 = 0, ρ0 = 1 − H (ψ0), (4.9)

where H stands for the Heaviside function (H (ψ0) = 0, ψ0 � 0; H (ψ0) = 1, ψ0 > 0).
The expansion is singular because of the presence of the derivatives of ρ with respect
to ψ0 in (4.7)–(4.8). Before proceeding further, we make the additional simplification
of neglecting the effect of molecular diffusion term D0 as compared to ε, since the
ratio D0/ε = nD′

0/UαT 	 1. The subtle, but negligible, effect of molecular diffusion
on the BL solution will be discussed later.

Following Cole (1968) we define inner, BL, variables as follows

Φ = φ0, Ψ = ψ0/ε
1/2, Wφ = wφ, Wψ = wψ/ε1/2. (4.10)

As an additional preparatory step we notice that near ψ0 = 0 we have

q0(φ0, ψ0) = q0f (Φ) + ε1/2Ψ
∂q0

∂ψ0

∣∣∣∣
ψ0=0

+ · · · (4.11)

and similarly for sin θ0 and cos θ0, with q0f = q0(φ0, 0) and θ0f = θ0(φ0, 0). These are
precisely the relationships used in order to continue the flow beneath Ψ = 0 and all
that is required for the first-order BL approximation is that the normal derivatives of
q0 and θ0 are bounded at ψ0 = 0.
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Substitution of (4.10) and (4.11) into (4.5), expanding in ε and retaining the leading-
order term O(1), the only one to be considered here, leads to

∂Wφ

∂Ψ
= −γ sin θ0f

q0f

∂ρ

∂Ψ
. (4.12)

Since by (3.7) q0f = γ sin θ0f , equation (4.12) becomes

∂Wφ

∂Ψ
= − ∂ρ

∂Ψ
. (4.13)

In a similar manner, (4.6)–(4.8) yield

∂Wφ

∂Φ
+

∂Wψ

∂Ψ
= 0, (4.14)

Wφ

∂ρ

∂Φ
+ Wψ

∂ρ

∂Ψ
= q0f

∂

∂Ψ

(
Wφ

∂ρ

∂Ψ

)
. (4.15)

Assuming that the BL is developing along the interface defined by Ψ =0, Φ > 0
(as in figure 1), matching with the outer solution (4.9) requires

Wφ → 1, Wψ → 0, ρ → 0 ( for Ψ → ∞); Wφ → 0, Wψ → 0, ρ → 1 (for Ψ → −∞).
(4.16)

Similarly to Van Duijn & Peletier (1992), we further simplify the system by
integrating (4.13) first, and by using (4.16) to obtain

WΦ(Φ, Ψ ) + ρ(Φ, Ψ ) = 1. (4.17)

This result is identical to that pertaining to stratified flow (3.5) and it implies
that a hydrostatic pressure distribution prevails across the boundary layer, which is
consistent with the well-known property of viscous boundary layers. Equation (4.17)
expresses in a simple manner the interaction between flow and density which is
otherwise neglected in Darcy’s law (2.1), if salt is regarded as a tracer.

Elimination of ρ leads to the final form of the BL equations for the flux vector
W (Wφ, Wψ )

∇ · W = 0, (4.18)

∇ · (WφW ) =
∂

∂Ψ

[
q0f Wφ

∂Wφ

∂Ψ

]
, (4.19)

where ∇(∂/∂Φ , ∂/∂Ψ ) operates in the (Φ, Ψ )-plane.
Before proceeding with the approximate solution of (4.18), (4.19) we review briefly

the exact results of Van Duijn& Peletier (1992).

4.2. Review of the Van Duijn & Peletier (1992) solution of uniform flow (figure 1a)

The problem is a particular case for which q0 = 1, φ0 = x, ψ0 = y, Wφ = qx,

Wψ = qy/ε
1/2. There is no length scale L present in this case and Van Duijn& Peletier

(1992) have solved equations similar to (4.18), (4.19), with q0f = 1, by using the
standard classical procedure of similarity variables. These are defined by ξ =YX−1/2

and f = Ψ X−1/2, where X = x, Y = y/ε1/2, and Ψ is the streamfunction of the W field.
Although Van Duijn & Peletier (1992) have solved for the more general condition

D0 > 0, in the case of interest here (D0 = 0) the ordinary differential equation satisfied
by f was found to be

(f
′2)′′ + ff ′′ = 0. (4.20)
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Equation (4.20) is different from the similar equation pertaining to laminar BL
between parallel streams (Lock 1951). The difference stems from the dependence
of the transverse dispersion coefficient on the flux, the leading term in (4.8) being
Fy = εq ∂ρ/∂y, whereas in the viscous case the parallel term is linear in the velocity
gradient. As a result, there is a qualitative difference between the velocity distribution
in the laminar BL and the one at an interface in porous media set forth by Van
Duijn & Peletier (1992). Their finding is that the lower edge of the BL is at a finite
depth ξ = −α and there the qx profile has a finite slope given by ∂qx/∂y = c/(εx)1/2

at ξ → −α from above while qx → 0. The constant c = 0.3551 was determined by
numerical solution of (4.20). However, if molecular diffusion is taken into account
(D0 > 0), the numerically determined qx profile is continuous. For the case of practical
interest for which D0 	 ε, a thin diffusive sublayer appears at Y = −α, which is of
little consequence and which we neglect here.

Another major finding of Van Duijn& Peletier (1992) is that the heavier fluid is
sucked into the BL and the flux is given by

qy = ε
∂qx

∂y
= c

( ε

x

)1/2

, i.e. q ′
y = αT

∂q ′
x

∂y ′ = c
(αT

x ′

)1/2

. (4.21)

Since Van Duijn& Peletier (1992) have determined the constant c for D0 > 0 as
well, it is of interest to examine the impact of assuming in (2.7) that the dispersion
tensor D′

ij is constant and proportional to U . Such an assumption was adopted in
previous works and it leads to linearization of the diffusive term in the right-hand
side of (4.19). By a proper rescaling, it is found that the error is large, as the rate of
entrainment of salt water (4.21) is almost doubled. We shall adhere here to the case
of interest in applications, namely neglect of D0 and dependence of D′

ij on the local
flux q ′ as in (2.7).

The similarity variables approach does not apply to the non-uniform flow case
owing to the presence of q0f (Φ0) in the right-hand side of (4.19). We proceed next
with solving equations (4.18), (4.19) approximately and the result will be compared
subsequently with those of Van Duijn& Peletier (1992).

5. Approximate solution of the boundary layer equations by von Kármán
method

We adopt the von Kármán integral equation method as applied to the related
viscous problem by Lock (1951). We refer to the sea-water intrusion problem
(figure 1b) and we seek the solution of the BL equations (4.18), (4.19) with
appropriate boundary conditions. The flow domains in the (x, y)- and (Φ, Ψ )-planes
are represented in figure 2. In line with the von Kármán approach, we integrate the
BL equations in the domain defined by Φ > 0, −∆� <Ψ <∆u, where Ψ = −∆�(Φ)
and Ψ = ∆u(Φ) are the equations of the lower and upper edges of the BL in the
(Φ, Ψ )-plane.

To formulate the boundary conditions, we observe that by (3.8) the line Φ = φ0 = 0
represents the equipotential that passes through the origin and the velocity qφ = q0(ψ0)
normal to it is given by (3.9). Hence, by the definition of Wφ we have there Wφ(0, Ψ ) = 1
for Ψ > 0. The BL develops downstream of the origin and therefore the heavier fluid
is at rest, i.e. Wφ(0, Ψ ) = 0 for Ψ < 0. At an arbitrary cross-section Φ , the unknown
flux distribution Wφ(Φ, Ψ ) satisfies Wφ(Φ, ∆u) = 1 and Wφ(Φ, −∆�) = 0, to match
the outer solution. Along the line Ψ = ∆u(Φ), Wφ(Φ, ∆u) = 1 (consistent with the
von Kármán approximation) and we define Wψ (Φ, ∆u) = Wψu(Φ), where the latter
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Figure 2. The sea-water intrusion problem. (a) (x, y)-plane. (b) (Φ,Ψ )-plane.

represents a given rate of exchange between the fresh-water body and the BL.
Finally, along the BL lower edge, we have in a similar manner Wφ(Φ, −∆�) = 0 and
Wψ (Φ, −∆�) = Wψ�(Φ), the rate of salt water suction by the BL. These conditions are
specified on the boundaries of the control volume in figure 2(b).

Integration of the BL equations (4.18), (4.19) in the control domain of figure 2(b)
with the given boundary conditions leads to

−∆u +

∫ Φ

0

Wψu(Φ
′) dΦ ′ +

∫ ∆u

−∆�

Wφ(Φ, Ψ ′) dΨ ′ −
∫ Φ

0

Wψ�(Φ
′) dΦ ′ = 0, (5.1)

−∆u +

∫ Φ

0

Wψu(Φ
′) dΦ ′ +

∫ ∆u

−∆�

W 2
φ (Φ, Ψ ′) dΨ ′ = 0. (5.2)

These equations are exact, the assumption that the BL upper and lower edges are
at finite Ψ, notwithstanding. Differentiation with respect to Φ and elimination of Wψu

leads to the unique ODE

d

dΦ

∫ ∆u

−∆�

[Wφ(Φ, Ψ ′) dΨ ′ − W 2
φ (Φ, Ψ ′)] dΨ ′ = Wψ�(Φ) (5.3)

for the unknown functions Wφ, Wψ�, ∆� and ∆u.

An additional boundary condition is obtained by observing that the slope
∂ρ/∂Ψ = − ∂Wφ/∂Ψ is discontinuous at Ψ = −∆�, as ∂Wφ/∂Ψ > 0 at −∆+

� and
∂Wφ/∂Ψ = 0 at −∆−

� (figure 2b). Hence, taking the limit of the transport
equation (4.15) for Ψ → −∆+

� we obtain

Wψ� = q0f

∂Wφ

∂Ψ

∣∣∣∣
Ψ =−∆+

�

, (5.4)

since Wφ → 0, while ∂ρ/∂Φ and ∂2ρ/∂Ψ 2 are finite at Ψ = − ∆+
� .

This relationship is consistent with (4.21) obtained by Van Duijn & Peletier (1992)
for uniform flow which expresses the balance between the vertical dispersive flux term
αT ∂/∂y ′(q ′

x ∂ρ ′/∂y ′) and the advective term q ′
y ∂ρ ′/∂y ′ at the lower edge of the BL.

By the von Kármán approach, (5.3), (5.4) are further simplified by assuming a
similarity solution for the velocity profile

Wφ(Φ, Ψ ) = F (ζ ), ζ =
Ψ + ∆�

∆
, (5.5)
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where ∆ =∆� + ∆u is the total thickness of the BL such that 0 < ζ < 1 in the BL.
Substitution of (5.5) into (5.3), (5.4) and differentiation leads to

I
d∆

dΦ
= Wψ�, (5.6)

Wψ� = q0f

F ′(0)

∆
, (5.7)

where the constant I is given by

I = (1/∆)

∫ ∆u

−∆�

[Wφ(Φ, Ψ ′) − W 2
φ (Φ, Ψ ′)] dΨ ′ =

∫ 1

0

[F (ζ ) − F 2(ζ )] dζ.

Elimination of Wψ� and integration in (5.6) yields the final solution which expresses
in a simple form the dependence of ∆ and Wψ� upon q0f (φ0), the flux along the sharp
interface solution

∆(Φ) =

[
2 F ′(0)

I
K(φ)

]1/2

, (5.8)

Wψ�(Φ) =
q0f (Φ)β

[K(φ)]1/2
, β =

[
IF ′(0)

2

]1/2

, (5.9)

where

K(φ) =

∫ φ

0

qof (φ′) dφ′. (5.10)

The von Kármán method implies selecting a suitable analytical expression for F (ζ )
that satisfies the matching conditions F (0) = 0, F (1) = 1 and F ′(1) = F ′′(1) = · · · = 0
at an appropriate order, fixing therefore the values of I and F ′(0) in (5.8), (5.9). This
solution is explored for the cases of uniform flow (figure 1a) and sea-water intrusion
(figure 1b) in the next section.

While ∆ and Wψ� are determined uniquely as functions of Φ = φ0 in a simple
manner for a selected shape F and for a given sharp interface solution, the relative
position of the BL edges ∆�, ∆u = ∆ − ∆� with respect to Ψ = 0 is left undetermined,
unless Wψu is specified in (5.1), (5.2). The latter represents the imposed fresh-water flux
into the BL and it is equal to zero for the case of sea-water intrusion in figure 1(b)
owing to the presence of the confining layer at y ′ = b′. This is also the condition
adopted by Van Duijn& Peletier (1992) for the uniform flow in figure 1(a). Then, it
is easily seen from (5.1) or (5.2) that

∆u

∆
= J,

∆�

∆
= 1 − J with J = (1/∆)

∫ ∆u

−∆�

W 2
φ (Φ, Ψ ′) dΨ ′ =

∫ 1

0

F 2(ζ ) dζ. (5.11)

These findings are consistent with those of Lock (1951) for viscous shear layers.
Finally, to determine the BL location in the physical plane x, y, we must project
ψ0u = ε1/2∆u(φ0) and ψ0� = − ε1/2∆�(φ0) by using the mapping (3.8) or similar ones,
depending on the sharp interface solution. Similarly, the flux of salt water into the BL
at the lower edge is given by qψ = ε1/2q0(φ0, ψ0�)Wψ�(φ0), which at the leading order
can also be written as qψ = ε1/2q0f (φ0)Wψ�(φ0), with qψ normal to the sharp interface.
By using this last expression, we can determine the total salt-water discharge between
the toe and any point along the interface by

Qs(φ0) =

∫ s

0

qψ dsφ = ε1/2

∫ φ0

0

Wψ�(Φ
′′) dΦ ′′, (5.12)
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where we used the relationship dsφ = dφ0/q0f . By using (5.9), we obtain

Qs(φ0) = ε1/2β

∫ φ0

0

q0f (φ′
0)[K(φ′

0)]
−1/2 dφ′

0

= ε1/2β

∫ φ0

0

dK

dφ′
0

K−1/2 dφ′
0

= 2ε1/2β [K(φ0)]
1/2. (5.13)

The flux profile within the BL is obtained in a similar manner from qφ = q0(ψ0) F (ζ ),
with ζ given by (5.5) and ψ0 = ε1/2Ψ varying between −ε1/2∆� and ε1/2∆u.

5.1. First-order correction to the outer flow

In the case of viscous flow past a body, Cole (1968) determined in a systematic manner
the next correction to the outer flow w1. The well-known result is that the correction
manifests itself as a potential flow with boundary condition wψ1(φ0, 0) = ε1/2WΨ (Φ0),
which can be interpreted as flow due to the displacement thickness.

In the present case, since there is no through-flow at the upper edge of the BL, the
correction applies to the salt-water body only. The correction in the physical plane
x, y is given by q1(x, y) which satisfies

q1 = ∇φ1, ∇2φ1 = 0 for ψ0 < 0, (5.14)

with boundary condition

qψ1 = ε1/2qof (φ0) WΨ �(φ0) at ψ0 = 0, (5.15)

with WΨ �(φ0) given by (5.9). In other words, the potential flow in the salt-water
body is caused by the given flux (5.15), normal to the sharp interface. Unlike the BL
problem, in order to solve for φ1 we need to know the shape of the domain of the
salt-water body and the appropriate conditions on the boundaries, besides (5.15).

6. Application to uniform flow and to sea-water intrusion problems and
comparison with existing solutions

6.1. Uniform flow (figure 1a)

This is a particular case of the general approximate BL solution of the preceding
section for q0 = q0f = 1, φ0 = x, ψ0 = y. It is easy to compare the approximate results
based on the von Kármán method with the exact result of Van Duijn& Peletier
(1992) for the salt-water flux (4.21) qy = 0.355(ε/x)1/2.

Thus, by selecting for the flux profile the simple parabolic shape F (ζ ) = 2ζ −ζ 2 that
satisfies F (0) = F ′(1) = 0, F (1) = 1, we obtain I = 2/15, J = 8/15, F ′(0) = 2, β = 0.365.

Substitution in (5.9) with q0f = 1, Φ = x leads to qy =Wψ� = 0.365(ε/x)1/2, which
exceeds the exact solution by 4 %.

Adopting the fourth-order polynomial proposed by Lock (1951) for viscous shear
flow, namely F (ζ ) = 2ζ − 2ζ 3 + ζ 4 (F ′(1) = F ′′(1) = 0), the result is

I = 37/315, J = 367/630, F ′(0) = 2, β = 0.343, (6.1)

and (5.9) leads to qy = Wψ� =0.343(ε/x)1/2 which is smaller than the exact result by
2 %. We shall adopt this profile for further computations.

We conclude that the approximate BL solution based on the von Kármán method
leads to accurate results in the case of uniform flows. We explore it next for solving
the problem of non-uniform flow, the main topic of the present study.
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6.2. Sea-water intrusion (figure 1b)

With the Glover (1959) approximation adopted for the zero-order outer flow (the
sharp interface solution) it is possible to derive the boundary solution (5.8)–(5.11) in
an analytical closed form. Indeed, with flux along the interface q0f (φ0) given by (3.9)
we obtain

K(φ) =

∫ φ

0

dφ′

[(1 − ηφ′)2 + η2]1/2
=

1

η

[
arcsinh

(
φ − 1

η

)
+ arcsinh

(
1

η

)]
. (6.2)

Recall that the parameter η = U/[(κg/µ)(ρs/ρf −1)] < 0.5 characterizes the ‘flatness’
of the sharp interface, since the dimensionless distance to the toe is xB = 1/(2η) > 1
(figure 1b).

Hence, we obtain from (5.8), (5.9) the BL thickness and the dimensionless salt-water
flux, respectively, as functions of Φ =φ0 along the interface ψ0 = 0. Thus, it is possible
to depict the upper and lower edges of the BL (5.11) ψ0 = ε1/2∆u(φ0) and ψ0 =
−ε1/2∆�(φ0), respectively, in the physical plane x, y by using the mapping (3.8) for
0 <φ0 < 1/η. In particular, the maximal thickness is reached at the outflow
face AB (figure 1b) for φ0 = 1/η, i.e. ∆max = ∆(1/η) = [2F ′(0) K(1/η)/I ]1/2 =
[2F ′(0)arcsinh(1/η)/ηI ]1/2. In order to make the BL approximation a valid one,
ψ0 = ε1/2∆umax = ε1/2J∆max must be much smaller than unity, such as not to alter
significantly the flow at AB (figure 1b).

The analytical expression of Wψ�(φ0) (5.9) can be used in (5.15) in order to derive
the first-order correction q1 to flow in the salt-water body.

One of the variables of interest is the discharge of salt water entrained in the BL
(5.12). It is determined by substituting (6.2) into (5.13), and the total discharge to the
sea is given by Qs max =Qs(1/η). Recall that the dimensionless discharge is defined by
Qs = Q′

s/Ub′ = Q′
s/Q

′, the ratio between the discharge of salt water and that of fresh
water. Substitution of K (6.2) into (5.13) yields the final expressions

Qs = 2ε1/2β

{
1

η

[
arcsinh

(
φ0 − 1

η

)
+ arcsinh

(
1

η

)]}1/2

, (6.3a)

Qs max = 2ε1/2β

[
1

η
arcsinh

(
1

η

)]1/2

. (6.3b)

In order to illustrate the results, we have plotted figure 3(a) the dependence of
Qs/(ε

1/2β) (6.3a) upon the ratio s/xB , where s is the dimensionless distance s from
the toe φ0 = 0 along the sharp interface ψ0 = 0. The relationship ds =(dx2 + dy2)1/2

and (3.8) were used for this purpose, while xB = 1/(2η). The curves are depicted for
different values of η and they can be readily used for estimating the marine-water
entrainment along the BL. Since the BL approximation is supposed to be valid if
Qs max 	 1, we may estimate from (6.3b) what are the maximal values of admissible ε

for a given η. Thus, for η = 0.1 (i.e. xB = 5), β = 0.343 and Qs max = 0.05, we arrive at
εmax � 1.8 × 10−4 while for η =0.5 (xB = 1), εmax � 2 × 10−3. These values are within
the expected range in field applications.

In order to further illustrate the results, we compare them with published numerical
solutions. The problem of sea-water intrusion was solved numerically first by Henry
(1964), and the solution has served as a benchmark for many other numerical works.
However, Henry (1964) has assumed that the dispersion coefficients are constant and
isotropic, i.e. in our notation he has solved the problem with D′

ij = αU δij in (2.7).
Besides, the Péclet number was quite small, Pe = 10, and the boundary condition at
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Figure 3. (a) Ratio of the accumulated salt-water entrainment to the total fresh-water
discharge, for different values of η, as a function of the distance along the interface. The
ratio at the sea outflow face as a function of η is given in (b).

the coast was different. Thus, the solution is not directly comparable with the present
one.

Smith (2004) solved numerically the problem of sea-water intrusion, including the
effect of density and the dependence of the dispersion coefficients on the flux, as
in (2.7). Comparison with his simulations is limited by his choice of values for
ε = αT /b′ = 1/Pe, the minimal one being 1/200, much larger than that anticipated in
applications, and preventing the comparison with the BL approximation used here.
Nevertheless, we have adopted this value for the purpose of comparison, for the case
with the largest considered value of η = 0.444. The numerically determined value of
Qs max was 0.079 whereas the BL solution (6.3b) led to Qs max = 0.091, a difference
of 14 %. This may be regarded as good agreement in view of the large ε and the
difference in flow patterns in the toe region. Smith (2004) has solved for a horizontal
bottom and, in such a case, the sharp interface and BL solutions cannot represent
accurately the flow pattern beneath the interface near the origin. This local effect may
also explain the seaward deviation of the toe (defined by the intersection of the line
ρ = 0.5 with the aquifer bottom) from that predicted by Glover (1959).

To further illustrate the approach we show in figure 4(a) the BL development along
the interface and a few flux profiles for the parameter values ε = 10−4 and η = 1/4
(xB = 2). This was achieved by using (5.8) to compute ∆, and the fourth-order poly-
nomial for F (ζ ). Subsequently, the first-order correction of the salt-water flow from
the sea toward the interface is shown in figure 4(b), by assuming that the impervious
bottom is horizontal and the aquifer extends beneath the sea to x = 5xB =10. The
potential φ1(x, y) (5.14) and the associated streamfunction were determined by
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(first-order correction). Both figures are for ε = 10−4 and η = 1/4, with fourth-order polynomial
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numerically solving the Laplace equation by a standard code, with the boundary
condition of the given flux (5.15), (5.9) along the interface, of constant potential on
the sea bottom and no flow at x =10. The pattern is in qualitative agreement with
that determined by Smith (2004) by a numerical solution of the equations of flow.

7. Summary and conclusions
We consider steady and stable flow of a lighter fluid (fresh water) above a body of

heavier fluid (salt water) in porous media. In the absence of mixing, a sharp interface
separates the two fluids, the lower one being at rest. Both flux and density are
discontinuous across the interface. In reality, pore-scale dispersion causes mixing and,
as a result, a transition zone develops along the interface. The pertinent equations of
flow are nonlinear owing to the variable density and the dependence of the dispersion
coefficients on flux. This is different from the similar problem of shear laminar flow
between two streams in which mixing is governed by the viscosity coefficient, which
does not depend on velocity.
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The relevant Péclet number of the problem Pe = L/αT , where L is a characteristic
length (i.e. formation thickness) and αT is the transverse dispersivity, is much larger
than unity in most applications. As a consequence, the thickness of the mixing layer
is small compared to L. Such cases cannot be solved by most numerical codes and
approximate solutions available in the hydrological literature, which were devised
for moderate or small Pe. To tackle the high Pe flows, we have adopted the BL
(boundary-layer) approximation, that was used by Lock (1951) for solving the viscous
shear-flow problem and by Van Duijn & Peletier (1992) for flow in porous media. The
latter have solved the problem of fresh water moving at uniform flux distribution,
above a planar interface. The main contribution of the present study is to extend
the approach to non-uniform flow of the lighter fluid, as encountered in applications.
Towards this aim, we have followed the Cole (1968) approach to viscous BL, in
which the velocity is regarded as a function of the potential and streamfunction of
the fresh-water interface flow, as independent variables. Subsequently to formulating
the BL equations, we have solved them approximately by adopting the von Kármán
integral method (Lock 1951).

One of the important findings of Van Duijn & Peletier (1992) was that the heavier
fluid is entrained by the mixing layer, causing flow in the lower fluid. For uniform flow,
we have compared the results based on the von Kármán approximation with those
obtained by Van Duijn & Peletier (1992) who numerically integrated the complete BL
equations, and the agreement between the entrainment rates was excellent.

We have applied the approach to the classical and important problem of salt-water
intrusion in coastal aquifers. We have been able to derive the BL thickness, the flux
distribution, the rate of entrainment and the flow pattern in the salt-water body in a
general manner. In contrast, the relative position of the BL with respect to the sharp
interface depends on the rate of extraction or of recharge of fresh water. The latter
was assumed to be zero for the problem at hand.

Concluding, it seems that realistic modelling of problems of variable density flows
in porous media encountered in applications, calls for development of numerical tools
that can account for the existence of a thin transition zone. The BL approach may
be an appropriate one and the present results may serve as a benchmark for more
complex problems.

The work for this paper was carried out in partial fulfilment of the requirements
for a doctor of philosophy degree by Amir Paster at the Tel Aviv University. The
research was supported by the ministry of Science, Israel.

REFERENCES

Bakker, M. 2003 A Dupuit formulation for modelling seawater intrusion in regional aquifer systems.
Water Resour. Res. 39, 1131. doi:10.1029/2002WR001710.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Bear, J. 1979 Hydraulics of Groundwater. McGraw-Hill.

Bear, J. & Dagan, G. 1964 Some exact solutions of interface problems by means of the hodograph
method. J. Geophys. Res. 69, 1563–1572.

Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell.

Dagan, G. 1971 Perturbation solutions of the dispersion equation in porous mediums. Water Resour.
Res. 7, 135–142.

Dagan, G. 1989 Flow and Transport in Porous Formations. Springer.

Dentz, M., Tartakovsky, D. M., Abarca, E., Guadagnini, A., Sanchez-Vila, X. & Carrera, J.

2006 Variable density flow in porous media. J. Fluid Mech. 561, 209–235.



472 A. Paster and G. Dagan

Fiori, A. & Dagan, G. 1999 Concentration fluctuations in transport by groundwater: comparison
between theory and field experiments. Water Resour. Res. 35, 102–112.

Glover, R. E. 1959 The pattern of freshwater flow in a coastal aquifer. J. Geophys. Res. 64, 457–459.

Henry, H. R. 1964 Effects of dispersion on salt encroachment in coastal aquifers. Water Supply
Paper 1613-C. US Geol. Surv.

Holzbecher, E. 1998 Modeling Density-Driven Flow in Porous Media. Springer.

List, E. J. & Brooks, N. H. 1967 Lateral dispersion in porous media. J. Geophys. Res. 72, 2531–2541.

Lock, R. C. 1951 The velocity distribution in the laminar boundary layer between parallel streams,
Q. J. Mech. Appl. Maths 4, 42–63.

Paster, A., Dagan, G. & Guttman, J. 2006 The salt-water body in the Northern part of Yarkon–
Taninim aquifer: field data analysis, conceptual model and prediction. J. Hydrol. 323, 154–167.

Rubin, H. 1983 On the application of the boundary layer approximation for the simulation of
density stratified flows in aquifers. Adv. Water Resour. 6, 96–105.

Rugner, H., Holder, T., Maier, U., Bayer-Raich, M., Grathwohl, P. & Teutsch, G. 2004
Natural attenuation investigation at the former landfill ‘Osterhofen’. Grundwasser 2, 98–108
(in German).

Smith, A. J. 2004 Mixed convection and density-dependent seawater circulation in coastal aquifers.
Water Resour. Res. 40, W08309. doi:10.1029/ 2003WR002977.

Van Duijn, C. J. & Peletier, L. A. 1992 A boundary-layer problem in fresh–salt groundwater flow.
Q. J. Mech. Appl. Maths 45, 1–24.


